Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.