Abstract
The postperovskite phase transition of Fe and Al-bearing MgSiO3 bridgmanite, the most aboundant mineral in the Earth's lower mantle, is believed to be a key to understanding seismological observations in the D″ layer, e.g., the discontinuous changes in seismic wave velocities. Experimentally reported phase transition boundaries of Fe and Al-bearing bridgmanite are currently largely controversial and generally suggest wide two-phase coexistence domains. Theoretical simulations ignoring temperature effects cannot evaluate correctly two-phase coexistence domains under high-temperature. We show high-pressure and high-temperature phase transition boundaries for various compositions with geophysically relevant impurities of Fe2+SiO3, Fe3+Fe3+O3, Fe3+Al3+O3, and Al3+Al3+O3 derived from the ab initio finite-temperature free energies calculated combining the internally consistent LSDA+U method and a lattice dynamics approach. We found that at ∼2500K, incorporations accompanied by Fe3+ expand the two-phase coexistence domains distinctly, implying that D″ seismic discontinuities likely arise from the phase transition of Fe2+-bearing bridgmanite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.