Abstract
Fatty acids play important roles in the regulation of endoplasmic reticulum (ER) stress-induced apoptosis in different cells. Currently, the effects of fatty acids on bovine mammary epithelial cells (MEC) remain unknown. Our study examined bovine MEC viability and measured unfolded protein response (UPR)-related gene and protein expressions following fatty acid treatments. To evaluate the role of fatty acids, we treated MAC-T cells (a line of MEC) with 100 to 400 μM of saturated (palmitic and stearic acid) and unsaturated (palmitoleic, oleic, linoleic, and linolenic acid) fatty acids and 1 to 5 mM of short- and medium-chain fatty acids (acetic, propionic, butyric, and octanoic acid). Thereafter, we determined UPR-related gene expression using quantitative real-time PCR. Palmitic acid stimulated expression of XBP1s, ATF4, ATF6A, and C/EBP homologous protein (CHOP). Stearic acid increased expression of XBP1s and CHOP and decreased expression of ATF4 and ATF6A. Results of Western blot analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that palmitic and stearic acid reduced MAC-T cell viability and induced extreme ER stress by increasing the protein expression of ER stress markers, such as phospho-PKR-like endoplasmic reticulum kinase, phospho-eIF2α, cleaved CASP-3, and CHOP. Among unsaturated long-chain fatty acids, palmitoleic acid increased expression of ATF4 and ATF6A. Oleic acid increased expression of XBP1s, ATF4, and ATF6A. Linoleic and linolenic acids increased expression of XBP1s, ATF4, and ATF6A but decreased expression of XBP1s and ATF6A at the highest dose. Although palmitoleic, oleic, and linoleic acid decreased CHOP expression, only palmitoleic acid increased MAC-T cell viability. Therefore, unsaturated long-chain fatty acids did not induce severe ER stress. Acetic, propionic, and butyric acids decreased expression of ATF4, ATF6A, and CHOP and increased XBP1s expression. Although only octanoic acid increased ATF4 and ATF6A expressions, it lowered expression of XBP1s and CHOP. Although fatty acid treatment did not increase the levels of ER stress proteins, butyric and octanoic acids reduced cell viability, possibly because of early differentiation. These results suggest that saturated fatty acids play important roles in MEC viability by inducing severe ER stress compared with unsaturated fatty acids. In addition, acetic and propionic acids (short- and medium-chain fatty acids) reduced ER stress. Therefore, the present study reflects the new insight that serum fatty acid concentration plays an important role in maintaining the lactation physiology of dairy cows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.