Abstract

This study aimed to explore the effects of various lipids on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles (EBNs) with and without 20% high-amylose corn starch (HACS). Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction revealed that lauric acid bound more strongly to starch than did stearic acid and oleic acid, and the binding capacity of fatty acids with starch was stronger than that of glycerides. The presence of HACS during extrusion facilitated increased formation of starch-lipid complexes. Evaluations of cooking quality and digestion characteristics showed that EBNs containing 20% HACS and 0.5% glycerol monooleate demonstrated the lowest cooking loss (7.28%), and that with 20% HACS and 0.5% oleic acid displayed the lowest predicted glycemic index (pGI) (63.54) and highest resistant starch (RS) content (51.64%). However, excessive starch-lipid complexes were detrimental to EBNs cooking quality and the resistance of starch to digestive enzymes because of the damage to the continuity of the starch gel network. This study establishes a fundamental basis for the development of EBNs with superior cooking quality and a relatively lower GI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.