Abstract

AbstractThe tendency of epoxy resins to form three‐dimensional structures can make them brittle, which restricts their use in various applications even if they have great mechanical properties. Due to the expansion of epoxy resin application to electric automotives and aerospace as carbon fiber resistance plastics (CRFPs), it is desirable to synthesize epoxy resins that is more impact resistant. Herein, the synthesis of flexible epoxy resin FMER‐F and FMER‐J is reported. These epoxy resins were based on bisphenol F and J diglycidy ether. The dimeric fatty acid modified epoxy resins (FMERs) were synthesized by reacting acid anhydride modified epoxy resins (AMERs) with dimeric fatty acids. To obtain thermosetting epoxy polymers, the epoxy resin was mixed with a curing agent and an accelerator and, subsequently, it was cured at a high temperature. The mechanical properties of various epoxy polymers were analyzed to evaluate the change in the performance of the materials. The flexural strength of the composition with 10 parts per hundred resin (phr) of FMER‐F increased by 21%. The impact strength of the composition with 30 phr of FMER‐J increased by 27%. FMERs were found to be used as toughening agents in epoxy resins and composites because of their ability to enhance mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.