Abstract

Debonding of clinically relevant CoCrMo-polymethylmethacrylate (PMMA) interfaces is shown to occur subcritically under fatigue loading, implying that debonding may occur at loads much lower than those required for catastrophic failure. Interface fracture mechanics samples containing precoated and uncoated grit-blasted CoCrMo substrates and a PMMA layer were constructed and quantitatively evaluated in terms of their critical interface adhesion and subcritical debond behavior. The precoat surfaces had markedly enhanced adhesion and fatigue resistance in both air and simulated physiological environmental conditions compared to the uncoated samples. Constraint of the PMMA layer does not significantly affect the debond process for thickness between 2- and 5-mm. In addition, wear particles were collected and shown to be consistent with particle sizes reported in vivo and are on the scale of the metal surface roughness. Life prediction methods using the subcritical debond-growth data are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.