Abstract

It is known that Na-K,adenosine triphosphatase (ATPase) in cell membranes represents an important consumer of cellular energy, eg, adenosine triphosphate (ATP), and that the concentration and activity of this enzyme change in a dose-dependent manner with serum thyroid hormone levels. To examine the hypothesis that low triiodothyronine (T 3) syndrome represents a cellular adaptation in generalized severe illnesses that saves tissue energy expenditure, we measured the muscle Na-K,ATPase concentration and its activity in rats that led to low T 3 syndrome induced by fasting. The Na-K,ATPase concentration was measured by 3H-ouabain binding to soleus muscle, and its activity was measured by 42K uptake in the contralateral soleus muscle. The effects of refeeding or T 3 administration on Na-K,ATPase in soleus muscle in fasted rats were also examined. Na-K,ATPase concentration and activity were both increased in hyperthyroid rats and decreased in hypothyroid rats. In the fasting state, they were decreased to as low as the levels seen in hypothyroidism. Furthermore, with fasting + refeeding or fasting + T 3 administration, Na-K,ATPase in soleus muscle returned to the normal level. These results suggest that tissue energy expenditure, as assessed by Na-K,ATPase, in skeletal muscles of fasted rats with low T 3 syndrome is actually decreased to levels seen in hypothyroidism, due at least partly to the decrease in serum T 3 concentrations, and that there exist some adaptation mechanisms in the peripheral tissues for the accomodation of energy metabolism in the body through decreased thyroxine (T 4) to T 3 conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.