Abstract
The activity of the sympathetic nervous system in mice that were either fed ad libitum, food restricted or fasted was estimated by measuring the accumulation of dopamine following the inhibition of dopamine beta-hydroxylase activity. Mice in each group were injected with the dopamine beta-hydroxylase inhibitor 1-cyclohexyl-2-mercaptoimidazole and were exposed to either 30 degrees C (warm) or 4 degrees C (cold). Mice were killed 1 h after the injection. Both heart and brown adipose tissue were then quickly removed and homogenized in ice-cold perchloric acid. Dopamine and noradrenaline were determined using high performance liquid chromatography. Regardless of whether mice were warm or cold exposed, both content and concentration of brown adipose tissue and dopamine were predictably higher in 1-cyclohexyl-2-mercaptoimidazole-injected mice than in non-injected animals. In mice fed ad libitum, post-injection content and concentration of dopamine in both brown adipose tissue and heart were higher in cold-exposed mice than in warm-exposed animals. In food-restricted and fasted mice, post-injection concentrations of dopamine in brown adipose tissue were higher in cold-exposed mice than in warm-exposed animals. In food-restricted and fasted mice there was no difference between warm- and cold-exposed animals with respect to post-injection contents and concentrations of dopamine in heart tissue. In fasted mice there was no difference between warm- and cold-exposed animals in post-injection content of dopamine in brown adipose tissue. This study provides further evidence that fasting, in contrast to food restriction, may blunt the tissue sympathetic nervous system response in brown adipose tissue of cold-exposed mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.