Abstract

Laboratory pot experiments were run to study the effects of added zinc (Zn) with and without farmyard manure (FYM) and phosphorus (P) on Zn transformations in two Alfisols, together with Zn uptake by wheat plants grown up to 60 days. In the first experiment the treatments included four levels of Zn (0, 3.75, 7.5 and 15 mgkg(-1) soil) and two levels of FYM (0 and 10 tha(-1)), and in the second experiment five levels of P (0, 20, 40, 80 and 160 mgkg(-1) soil) and one level of Zn (7.5 mgkg(-1) soil). The soils were sequentially fractionated into water-soluble plus exchangeable (CA-Zn), inorganically bound (AAC-Zn), organically bound (PYR-Zn), oxide bound (OX-Zn) and residual (RES-Zn) forms. The effect of added FYM was more evident on the OX-Zn fraction and the percentage utilization of Zn by wheat was the greatest with the addition of FYM alone at the rate of 10 tha(-1) (1.95-2.38%) in comparison to other treatment combinations. Among the levels, application of 7.5 mg Zn kg(-1) soil showed the maximum increase in different fractions of soil Zn and significantly increased the Zn utilization by wheat (0.87-1.17%) as compared to other Zn levels (0.58-0.88%). On an average, about 85% of the added Zn was recovered in different fractions in Zn treated pots. However, the recovery per cent of the added Zn was significantly higher at Zn level 7.5 (95%) mgkg(-1) soil than at 3.75 (87%) and 15 (73%) mg Zn kg(-1) soil levels. Phosphorus additions up to 40 mgkg(-1) soil increased the plant-available Zn in soils whereas at higher P levels plant-available forms decreased with a concominant increase in the inert forms. At 160 mg P kg(-1) soil, the P effect was more pronounced in the shoot than in the root, suggesting that a higher P level inhibits Zn translocation from root to upper plant parts. Path analysis showed that the organically (PYR-Zn) and inorganically bound (AAC-Zn) Zn fractions were the predominant fractions that influenced the Zn availability to plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.