Abstract

Hydrophilic poly(vinyl butyral) (PVB)/Pluronic F127 (F127) blend hollow fiber membranes were prepared via thermally induced phase separation (TIPS), and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated. The addition of F127 to PVB/polyethylene glycol (PEG) system decreases the cloud point temperature, while the cloud point temperature increases slightly with the addition of F127 to 20% (by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5% (by mass). Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20% (by mass) PVB/F127/PEG200 system decreases with the addition of F127, so does the growth rate during cooling process. The blend hollow fiber membrane prepared at air-gap 5mm, of which the water permeability increases and the rejection changes little with the increase of F127 concentration. For the membrane prepared at zero air-gap, both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane, while the tensile strength changes little. Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix, increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.