Abstract
Magnesium alloys are increasingly used in the automotive and aerospace industries for weight reduction and fuel savings. The ratcheting behavior of these alloys is therefore an important consideration. The objective of this investigation was to study the effects of extrusion ratio on the ratcheting behavior of extruded AZ31B magnesium alloy. The experiments have shown that the extruded AZ31B Mg alloy presented the following characteristic behavior with increasing number of loading cycles: first an apparent cyclic softening was observed, then a cyclic hardening occurred, and finally a stable state was reached. This generic behavior can be explained by the fact that the variation trend of the maximum strain with the number of cycles differs from that of the minimum strain. The extrusion ratio did not influence the cyclic softening/hardening behavior or the final ratcheting strain variation trend of the extruded AZ31B Mg alloy with the mean stress and the peak stress. However, the extrusion ratio influenced the final ratcheting strain variation trend of the extruded AZ31B Mg alloy with the stress amplitude. Increasing the extrusion ratio also reduced the ratcheting strain and the effects of the load history on the ratcheting behavior of the extruded AZ31B Mg alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.