Abstract

The effects of extrusion parameters on the microstructure and tensile properties of the Mg–2Zn–0.5Ce, Mg–1Zn–1Mn–0.5Ce, and Mg–2Zn–1.5Gd alloys were investigated by conducting indirect extrusion at different temperatures, ram speeds, and extrusion ratios. All of the extruded alloys exhibited a bimodal grain structure composed of equiaxed fine recrystallized (DRXed) grains and elongated coarse unDRXed grains, except for some alloys extruded at a high temperature and a fast speed. With an increase in the temperature, speed, and ratio of extrusion, the average size and area fraction of the DRXed grains increased as a result of the temperature rise at the deformation zone caused by deformation heating. The yield strength increased with a decrease in the size of the DRXed grains according to the Hall–Petch relation, while the elongation increased with an increase in the fraction of the DRXed grains due to the suppression of {10−11}–{10−12} double twinning, irrespective of alloy composition. Due to these relationships between the microstructural characteristics and tensile properties, the yield strength decreased but the elongation increased when the temperature, speed, and ratio were increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.