Abstract

Climate change and plant invasion are two of the most important ecological issues facing the world today. Extreme events are likely to play an important role in plant invasion. For example, tolerance to temperature stress is critical for plant germination and survival of seedlings. Nonnative invasive species tend to differ from co-occurring native species in several traits. Increased mean temperatures are known to enhance the risk of plant invasions, but few experimental studies have linked plant invasion to both increasing mean temperature and extreme (low and high) temperatures. Ten plant species from Asteraceae (six nonnative invasive and four native species) were chosen and six temperatures (extremely low, average winter, average annual, average summer, high and extremely high) were used to test the effects of extreme temperatures on plant invasion in southern China. The results showed that nonnative invasive plant species (IS) germinated more readily and the seedlings grew better than those of native plant species (NS) at high temperatures, suggesting that global warming may facilitate invasion. Extreme temperatures decreased the seed germination rate and seedling growth of both IS and NS, although NS were more tolerant of extremely low temperatures (5/0 °C). IS, in turn, were more tolerant of extremely high temperatures (40/35 °C). Extreme high temperatures may increase the risk of plant invasion because IS seedlings are better able to become established, whereas low temperatures may hinder invasion. In addition, the species-specific differences in plant origin (IS and NS) and temperature tolerance were correlated with other climatic factors and should be considered in managing invasive species in a changing world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call