Abstract

The effects of anomalous weather conditions (such as extreme temperatures and precipitation) on CO2 flux variability in different tropical ecosystems were assessed using available reanalysis data, as well as information about daily net CO2 fluxes from the global FLUXNET database. A working hypothesis of the study suggests that the response of tropical vegetation can differ depending on local geographical conditions and intensity of temperature and precipitation anomalies. The results highlighted the large diversity of CO2 flux responses to the fluctuations of temperature and precipitation in tropical ecosystems that may differ significantly from some previously documented relationships (e.g., higher CO2 emission under the drier and hotter weather, higher CO2 uptake under colder and wetter weather conditions). They showed that heavy precipitation mainly leads to the strong intensification of mean daily CO2 release into the atmosphere at almost all stations and in all types of study biomes. For the majority of considered tropical ecosystems, the intensification of daily CO2 emission during cold and wet weather was found, whereas the ecosystems were predominantly served as CO2 sinks from the atmosphere under hot/dry conditions. Such disparate responses suggested that positive and negative temperature and precipitation anomalies influence Gross Primary Production (GPP) and Ecosystem Respiration (ER) rates differently that may result in various responses of Net Ecosystem Exchanges (NEE) of CO2 to external impacts. Their responses may also depend on various local biotic and abiotic factors, including plant canopy age and structure, plant biodiversity and plasticity, soil organic carbon and water availability, surface topography, solar radiation fluctuation, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call