Abstract
The increased intensity and frequency of extreme climate events (ECEs) have significantly impacted vegetation phenology, further profoundly affecting the structure and functioning of terrestrial ecosystems. However, the mechanisms by which ECEs affect the end of the growing season (EOS), a crucial phenological phase, remain unclear. In this study, we first evaluated the temporal variations in the EOS anomalies in Northern China (NC) based on the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from 2001 to 2018. We then used event coincidence analysis (ECA) to assess the susceptibility of EOS to four ECEs (i.e., extreme heat, extreme cold, extreme wet and extreme dry events). Finally, we examined the dependence of the response of EOS to ECEs on background climate conditions. Our results indicated a slight decrease in the proportion of areas experiencing extreme heat and dry events (1.10% and 0.66% per year, respectively) and a slight increase in the proportion of areas experiencing extreme wet events (0.77% per year) during the preseason period. Additionally, EOS exhibited a delaying trend at a rate of 0.25 days/a during the study period. The susceptibility of EOS to ECEs was closely related to local hydrothermal conditions, with higher susceptibility to extreme dry and extreme hot events in drier and warmer areas and higher susceptibility to extreme cold and extreme wet events in wetter regions. Grasslands, in contrast to forests, were more sensitive to extreme dry, hot and cold events due to their weaker resistance to water deficits and cold stress. This study sheds light on how phenology responds to ECEs across various ecosystems and hydrothermal conditions. Our results could also provide a valuable guide for ecosystem management in arid regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.