Abstract

Regeneration of transplantable pancreatic islet cells has been considered to be a promising alternative therapy for type 1 diabetes. Re-search has suggested that adult pancreatic stem and progenitor cells can be derived into insulin-producing cells or cultivated islet-like clusters given appropriate stimulating condi- tions. In this study we explored the effect of selective extracellular matrix (ECM) proteins on the potential of insulin-producing cell differen-tiation using ARIP cells, an adult rat pancreatic ductal epithelial cell line, as a model in vitro. Quantitative single cell morphology analysis indicated that all the four ECM proteins we have used (type I collagen, laminin, fibronectin and vitronectin) increased the single cell area and diameter of ARIP cells. In addition, se-rum-free cell cultivation was dependent on cell density and particular components; and serum could be replaced when systematic optimisa-tion could be performed. Surface treated with laminin was shown to be able to enhance overall cell expansion in the presence of de-fined serum-free medium conditions. Collagen treated surfaces enhanced insulin production in the presence of GLP-1 although the insulin gene expression was however weak accord-ingly. Our results suggest that selective ECM proteins have effects on single cell morphol-ogy, adhesion and proliferation of ARIP cells. These ECM molecules however do not have a potent effect on the insulin-producing cell dif-ferentiation potential of ARIP cells even com-bining with GLP-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call