Abstract
Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCli) in Necturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979; J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sides aCli was about 30 mM, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5--9 mM). Removal of Cl from the apical side caused a reversible decrease of aCli towards the equilibrium value across the basolateral membrane. A new steady-state aCli was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases of aCli when Li, choline, tetramethylammonium or N-methyl-D-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not change aCli. When K substituted for mucosal Na, the cells depolarized and aCli rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase of aCli in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability (PCl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membrane PCl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.