Abstract

A low-temperature micro-photoluminescence (μ-PL) investigation of InAs/GaAs quantum dots (QDs) exposed to a lateral external electric field is reported. It is demonstrated that the QDs PL signal could be increased several times by altering the external and/or the internal electric field. The internal field in the vicinity of the dots could be altered by means of an additional infra-red laser. We propose a model, which is based on an essentially faster lateral transport of the charge carriers achieved in an external electric field. Consequently, also the capture probability into the dots and subsequently the dot luminescence is also enhanced. The results obtained suggest that the lateral electric fields play a major role for the dot luminescence intensity measured in our experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.