Abstract
Photoinduced electron-transfer processes of alkyl-inserted ferrocene-trimethylene-oligothiophene-fullerene (Fc-tm-nT-C60) linked triads and directly linked ferrocene-oligothiophene-fullerene(Fc-nT-C60) triads were investigated using time-resolved fluorescence and transient absorption spectroscopic methods. In nonpolar solvent, the energy-transfer (EN) process occurred from 1nT* to C60 for both triads, without forming the charge-separated (CS) state. In polar solvent, the initial CS state, Fc-tm-nT(*+)-C60(*-), was formed via Fc-tm-nT-1C60 after the EN process from 1nT by photoexcitation of the nT moiety and after direct photoexcitation of the C60 moiety. For Fc-tm-nT(*+)-C60(*-), the positive charge shifted from the nT(*+) moiety to the Fc moiety, producing the final CS state, Fc(*+)-tm-nT-C60(*-), which lasted for 22-330 ns by changing nT from 4T to 12T. For Fc-nT-C60 in polar solvent, the CS state, in which the radical cation is delocalized on both Fc and nT moieties ((Fc-nT)(*+)-C60(*-)), was formed immediately after direct photoexcitation of the nT and C60 moieties. The lifetimes of (Fc-nT)(*+)-C60(*-) were estimated to be 0.1-50 ns by changing nT from 4T to 12T. The longer lifetimes of Fc(*+)-tm-nT-C60(*-) than those of (Fc-nT)(*+)-C60(*-) are caused by the insertion of the trimethylene chain to prevent the pi-conjugation between the Fc and nT moieties. The lifetimes for Fc(*+)-tm-nT-C60(*-) and (Fc-nT)(*+)-C60(*-) are prolonged by changing nT from 4T to 12T. For the charge-recombination process of Fc(*+)-tm-nT-C60(*-), the damping factor was evaluated to be 0.10 A(-1). For (Fc-nT)(*+)-C60(*-), the oxidation potentials of the nT moieties control the electron-transfer process with reflecting stabilization of the radical cations of the nT moieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.