Abstract
This study investigated the effects of exposure to mild hyperbaric oxygen during unloading on the properties of the soleus muscle in rats, because exposure to mild hyperbaric oxygen enhances oxidative metabolism in cells and tissues. Therefore, exposure to mild hyperbaric oxygen should inhibit the unloading-induced degenerative changes in skeletal muscles. One group of 7-week-old male Wistar rats were unloaded by hindlimb suspension for 2weeks (HU, n = 12). A second group of age-matched rats were exposed to mild hyperbaric oxygen at 1317hPa with 40% oxygen for 3h a day during hindlimb suspension (HU + MHO, n = 12). A third group of age-matched rats without hindlimb suspension and exposure to mild hyperbaric oxygen were assigned as the controls (WR, n = 12). Soleus muscle weight (per body weight), succinate dehydrogenase (SDH) activity, and peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) mRNA levels were lower in the HU and HU + MHO groups than in the WR group, and these were higher in the HU + MHO group than in the HU group. The unloading-induced type shift from type I to type IIA fibers was inhibited by exposure to mild hyperbaric oxygen during unloading. It is concluded that the unloading-induced decrease in soleus muscle weight (per body weight) and type shift from type I to type IIA fibers in the soleus muscle were partially inhibited by exposure to mild hyperbaric oxygen during unloading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.