Abstract

Little is known about the potential toxicity of polybrominated diphenyl ethers (PBDEs) on hepatic and renal tissues. In this study, we investigated the modifications in endogenous antioxidant capacity and oxidative damage in liver and kidney of rats by exposure to one of the most persistent PBDE congeners, the 2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99). Adult male rats (10 per group) received BDE-99 by gavage at a single dose of 0, 0.6, and 1.2 mg/kg body weight. Forty-five days after exposure, liver and kidney were removed and processed to examine the following oxidative stress (OS) markers: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive substances (TBARS). In liver, BDE-99 significantly increased SOD activity, GSSG levels, and GSSG/GSH ratio, while GSH levels decreased. Moreover, CAT activity was only reduced at the highest BDE-99 dose. In kidney, CAT activity was significantly decreased, while GSSG/GSH ratio significantly increased following BDE-99 exposure at 1.2 mg/kg body weight. Histological examination of tissues showed phagolysosomes in the kidneys of BDE-99-exposed rats. The results of this investigation suggest that acute oral BDE-99 exposure causes renal and liver impairment, being oxidative damage a potential mechanism for nephrotoxicity and hepatotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.