Abstract

Increasing environmental pollution may participate in the growing incidence of metabolic disorders. Static magnetic fields (SMFs) are an emerging environmental health issue due to increased exposure in residential and commercial areas; however, their metabolic effects in serum and skeletal muscle are largely unknown. The aim of this study was to investigate the effect of SMF exposure on glucose and lipid metabolism in serum and skeletal muscles of rats. Twelve 6- to 7-week-old male Wistar rats were randomly divided into two groups: rats exposed to 128 mT SMF and sham-exposed rats. This moderate-intensity exposure was performed for 1 h/day for 15 consecutive days. Animals exposed to 128 mT SMF displayed significant changes in both glucose (i.e., increases in plasma glucose and lactate and decrease in plasma insulin levels) and lipid (i.e., increases in plasma glycerol, cholesterol and phospholipids but not triglyceride levels) metabolism. During intraperitoneal glucose tolerance tests, SMF-exposed rats displayed significantly higher hyperglycemia compared to sham-exposed rats despite similar insulin levels in both groups. In tissues, SMF exposure induced significant alterations in enzyme activities only in glycolytic muscles and caused a significant decrease in quadriceps and liver glycogen content together with increased phospholipid levels. This study provides evidence that subacute SMF exposure of moderate intensity induces important alterations of glucose and lipid metabolisms, which deserve further investigations to evaluate long-term consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.