Abstract

Floral volatiles, visual traits, and rewards mediate attraction and defense in plant-pollinator and plant-herbivore interactions, but these floral traits may be altered by global warming through direct effects of temperature or longer term impacts on plant resources. We examined the effect of warming on floral and leaf volatile emissions, floral morphology, plant height, nectar production, and oviposition by seed predators. We used open-top chambers that warmed plants in the field +2-3 °C on average (+6-11 °C increase in daily maxima) for 2-4 weeks across 1-3 years at 3 sites in Colorado, USA. Volatiles were sampled from two closely related species of subalpine Ipomopsis with different pollinators: I. aggregata ssp. aggregata, visited mainly by hummingbirds, and I. tenuituba ssp. tenuituba, often visited by hawkmoths. While warming had no detected effects on leaf volatiles, the daytime floral volatiles of both I. aggregata and I. tenuituba responded in subtle ways to warming, with impacts that depended on the species, site, and year. In addition to the long-term effect of warming, temperature at the time of sampling independently affected the floral volatile emissions of I. aggregata during the day and I. tenuituba at night. Warming had little effect on floral morphology for either species, and no effect on nectar concentration, maximum inflorescence height, or flower redness in I. aggregata. However, warming increased nectar production in I. aggregata by 41%, a response that would attract more hummingbird visits, and reduced oviposition by fly seed predators by at least 72%. Our results suggest that floral traits can show different levels of plasticity to temperature changes in subalpine environments, with potential effects on animal behaviors that help or hinder plant reproduction. They also illustrate the need for more long-term field warming studies, as shown by responses of floral volatiles in different ways to weeks of warming versus temperature at the time of sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.