Abstract

Vertically aligned carbon nitride nanocone (CNNC) arrays were prepared on Ni-covered (100) silicon wafers by an abnormal glow discharge plasma assisted chemical vapor deposition method. In order to control the growth of the CNNC arrays, the distance of the anode tip to the substrate surface was adjusted for it affected the contents and activities of the species in the plasmas leading to the CNNC growth. Based on the characterization of the as-grown thin films and the analysis of the growth environments, the effects of the experimental conditions on the growth of the CNNC arrays were studied and their growth mechanism was discussed. The tip−substrate distance strongly affects the CNNC growth. Under appropriate experimental conditions, the vertically-aligned and intact CNNC arrays with the β-C3N4 microstructure and the minimum tip curvature diameter of only 3–4nm could be fabricated. This kind of CNNC arrays have many potential applications, such as tips for microscopes, electron-emitting units in field emission displays, electron-capture electrodes of solar cells etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.