Abstract

AbstractExpanded graphite was introduced into a MgO‐C refractory to suppress its thermal expansion and thus enhance thermal shock resistance. The refractory was prepared by mixing MgO powders (particle size = 75 μm and 1 mm), antioxidant and curing agents, flake and expanded graphite, and a novolak‐type phenolic resin at 50°C. This was followed by aging at 20°C for 24 h, compacting by uniaxial pressing, curing at 210°C for 5 h, and heat treatment at 1500°C. With an increase in expanded graphite content from 0 to 4 wt.%, the bulk density decreased, apparent density remained unchanged, and apparent porosity increased. The gaps created in the vicinity of MgO particles because of this increase in apparent porosity buffered the thermal expansion of MgO. This increased resistance to thermal shock up to 1500°C. However, the increase in expanded graphite content also had a detrimental effect reflected in the decrease in fracture strength and increase in the residual strain after repeated thermal shock. This contradiction indicates that composition optimization is important for the practical performance enhancement of MgO‐C bricks. The optimum content of the expanded graphite was determined as 2 wt.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call