Abstract

Various leg exoskeletons have been designed for gait rehabilitation. The transparency of these exoskeletons is crucial to their effectiveness in gait training. The weight and inertia of an exoskeleton are two important factors affecting its transparency. In this study, using a light-weight leg exoskeleton C-ALEX, we conducted a series of experiments to explore the effect of exoskeleton weight and inertia on the natural walking of twelve healthy subjects. They walked in C-ALEX under three levels of mass added to the leg: (i) no added mass, (ii) 1.8 kg, and (iii) 3.6 kg, and three different setups of C-ALEX: (i) freewalking without C-ALEX, (ii) with C-ALEX, and (iii) with C-ALEX compensating for the weight of the added mass. The result shows that increasing exoskeleton mass increases step length, decreases step height, and reduces maximum knee flexion. After weight compensation, the step height, and the maximum knee flexion partially restored, but the step length did not, implying that the inertia is responsible for the change in step length. The study demonstrates that compensating for weight alone cannot eliminate the changes due to exoskeleton mass. On the other hand, reducing the overall mass of the exoskeleton can better preserve the natural gait of the subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.