Abstract

Possible interactions of the neuropeptide oxytocin and the sex hormone estradiol may contribute to previously observed sex-specific effects of oxytocin on resting-state functional connectivity (rsFC) of the amygdala and hippocampus. Therefore, we used a placebo-controlled, randomized, parallel-group functional magnetic resonance imaging study design and measured amygdala and hippocampus rsFC in healthy men (n = 116) and free-cycling women (n = 111), who received estradiol gel (2 mg) or placebo before the intranasal administration of oxytocin (24 IU) or placebo. Our results reveal significant interaction effects of sex and treatments on rsFC of the amygdala and hippocampus in a seed-to-voxel analysis. In men, both oxytocin and estradiol significantly decreased rsFC between the left amygdala and the right and left lingual gyrus, the right calcarine fissure, and the right superior parietal gyrus compared to placebo, while the combined treatment produced a significant increase in rsFC. In women, the single treatments significantly increased the rsFC between the right hippocampus and the left anterior cingulate gyrus, whereas the combined treatment had the opposite effect. Collectively, our study indicates that exogenous oxytocin and estradiol have different region-specific effects on rsFC in women and men and that the combined treatment may produce antagonistic effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call