Abstract

Rare earth elements (REEs) are widely used in various fields, and their accumulation has been reported to pose environmental risks. Most studies confirmed the damage of excessive REE exposure to individual plants; however, little attention has been given to their effects on plant populations. A positive interaction indicates a mutually beneficial relationship between two populations, which is beneficial to the survival and growth of the populations. However, it remains unknown whether exogenous REEs affect the positive interactions between populations. This study investigated the effects of exogenous lanthanum(III) [La(III)] exposure on the positive interaction between soybean (Glycine max L.) and wheat (Triticum aestivum L.) populations by their modules. At normal nutrient level (½-strength Hoagland), the inhibition of excessive La(III) on population modules decreased with increasing population density. Decreases of 39.26 to 1.05% for soybean and 41.45 to 2.41% for wheat indicated the inhibition of La(III) on the positive interaction of both populations weakened with increasing population density. At low nutrient level (¼-strength Hoagland), the inhibition of excessive La(III) on population modules increased with increasing population density. Decreases of 5.82-57.14% for soybean and 4.22-59.04% for wheat indicated the inhibition of La(III) on the positive interaction of both population was strengthened with increasing population density. In summary, the inhibitory effects of exogenous La(III) exposure on the positive interaction between populations vary with both nutrient level and population density. This is a new factor that needs to be considered when evaluating the safety risks of REEs in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call