Abstract

The objectives of this study were to (1) determine the effect of exogenous fibrolytic enzyme derived from Trichoderma reesei on dry matter (DM) and neutral detergent fibre (NDF) degradability of whole plant faba bean silage (Snowbird), (2) evaluate the effects of fibrolytic enzyme (FETR) on DM and NDF degradation kinetics of whole plant faba bean silage, and (3) compare the difference between in the vitro approach (DaisyII incubation method) and the in situ assay-biological approach (nylon bag technique) in the determination of degradability of dry matter (DMD) and neutral detergent fibre (NDFD). The fibrolytic enzyme from Trichoderma reesei was a mixture of xylanase and cellulase. The whole plant faba bean silage was treated with seven doses of fibrolytic enzyme, with 0 as a control and 0.25, 0.5, 0.75, 1, 1.25 and 1.5 mL of FETR/kg DM of silage. The results obtained from the in situ method show that fibrolytic enzyme cubically (p < 0.05) affected DMD and quadratically (p < 0.01) affected NDFD with increasing level of enzyme application. In vitro DM and NDF degradability were quadratically and cubically (p < 0.01) affected by the increasing dosage of enzyme. Correlation analysis between the in situ assay-biological approach and the In vitro DaisyII approach showed a strong correlation (r = 0.98, p < 0.01) on overall DMD and also a satisfactory relationship (r = 0.84, p < 0.01) was found on overall NDFD. The enzyme application showed a great impact on NDF rumen degradation kinetics by decreasing the undegradable fraction and increasing the potential degradable fraction and the effective degradable content of fiber. The washable (W) and potential degradation fraction (D) were linearly (p = 0.05) increased by the enzyme treatments. Therefore, the undegradable fraction was linearly decreased (p = 0.05) with increasing dosage of enzyme. Both bypass (BNDF) and effective degradable NDF (EDNDF) were cubically (p = 0.05) affected by fibrolytic enzyme. In conclusion, the exogenous fibrolytic enzyme derived from Trichoderma reesei highly impacted rumen degradation characteristics and degradability of whole plant faba bean silage and could be used to improve fibre digestion of whole plant faba silage in dairy cows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.