Abstract

Seventeen fit women ran to exhaustion (14 +/- 4 min) at a constant speed and grade, reaching 95 +/- 3% of maximal O(2) consumption. Pre- and postexercise lung function, including airway resistance [total respiratory resistance (Rrs)] across a range of oscillation frequencies, was measured, and, on a separate day, airway reactivity was assessed via methacholine challenge. Arterial O(2) saturation decreased from 97.6 +/- 0.5% at rest to 95.1 +/- 1.9% at 1 min and to 92.5 +/- 2.6% at exhaustion. Alveolar-arterial O(2) difference (A-aDO(2)) widened to 27 +/- 7 Torr after 1 min and was maintained at this level until exhaustion. Arterial PO(2) (Pa(O(2))) fell to 80 +/- 8 Torr at 1 min and then increased to 86 +/- 9 Torr at exhaustion. This increase in Pa(O(2)) over the exercise duration occurred due to a hyperventilation-induced increase in alveolar PO(2) in the presence of a constant A-aDO(2). Arterial O(2) saturation fell with time because of increasing temperature (+2.6 +/- 0.5 degrees C) and progressive metabolic acidosis (arterial pH: 7.39 +/- 0.04 at 1 min to 7.26 +/- 0.07 at exhaustion). Plasma histamine increased throughout exercise but was inversely correlated with the fall in Pa(O(2)) at end exercise. Neither pre- nor postexercise Rrs, frequency dependence of Rrs, nor diffusing capacity for CO correlated with the exercise A-aDO(2) or Pa(O(2)). Although several subjects had a positive or borderline hyperresponsiveness to methacholine, this reactivity did not correlate with exercise-induced changes in Rrs or exercise-induced arterial hypoxemia. In conclusion, regardless of the degree of exercise-induced arterial hypoxemia at the onset of high-intensity exercise, prolonging exercise to exhaustion had no further deleterious effects on A-aDO(2), and the degree of gas exchange impairment was not related to individual differences in small or large airway function or reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.