Abstract

Lipoprotein lipase (LPL) is found in adipose tissue and muscle, and is important for the uptake of triglyceride-rich lipoproteins from plasma. This study examined the regulation of LPI. in adipose tissue and muscle by exercise training in combination with the fed or fasted state. After training male rats on a treadmill for 6 weeks, LPL activity, mass, and mRNA levels were measured in adipose tissue, heart, soleus, and extensor digitorum Iongus (EDL) muscles and corn pared with levels in sedentary rats. Tissue LPL was measured as the heparin-released (HR) and cellular-extracted (EXT) fractions 16 hours following the last bout of exercise, during which time some animals were fasted and others were allowed free access to food. Training led to an increase in HR LPL activity and LPL protein mass in soleus and EDL, but had no effect on adipose tissue and heart LPL. The increase in soleus LPL with exercise was in the HR fraction only, whereas the increase in EDL LPL with training was in both the HR and EXT fractions. All these changes in LPL activity were accompanied by similar changes in LPL immunoreactive mass. However, there were no changes in LPL mRNA levels with training. Feeding induced a large increase in adipose tissue LPL activity and mass in both the HR and EXT fractions; however, there was no change in mRNA levels. In heart, feeding yielded a decrease in HR but no consistent change in EXT activity or mass, and a consistent decrease in mRNA levels. As compared with control rats, trained rats demonstrated different responses to feeding in all tissues, especially in soleus and EDL. Whereas feeding had no effect on LPL in soleus and EDL of control rats, feeding induced a decrease in HR and EXT LPL in the soleus of trained rats. In addition, feeding yielded a significant decrease in EXT LPL of the EDL of trained rats. Thus, these data demonstrate that adipose tissue and heart LPL are highly regulated by feeding and are not responsive to long-term exercise training. On the other hand, skeletal muscle LPL is increased in trained rats, but this increase is blunted considerably by feeding following the last bout of exercise. These changes in LPL activity and mass are mostly unaccompanied by changes in LPL mRNA levels, demonstrating that much physiologic regulation occurs posttranscriptionally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.