Abstract

Exercise causes alterations in redox homeostasis (ARH). Measuring ARH in elite athletes may aid in the identification of training tolerance, fatigued states, and underperformance. To the best of our knowledge, no studies have examined ARH in elite male and female distance runners at sea level. The monitoring of ARH in athletes is hindered by a lack of reliable and repeatable in-the-field testing tools and by the rapid turnaround of results. We examined the effects of various exercise intensities on ARH in healthy (non-over-reached) elite male and female endurance athletes using clinical point-of-care (POC) redox tests, referred to as the free oxygen radical test (FORT) (pro-oxidant) and the free oxygen radical defence (FORD) (antioxidant). Elite male and female endurance athletes (n = 22) completed a discontinuous incremental treadmill protocol at submaximal running speeds and a test to exhaustion. Redox measures were analyzed via blood sampling at rest, warm-up, submaximal exercise, exhaustion, and recovery. FORD was elevated above rest after submaximal and maximal exercise, and recovery (p < 0.05, d = 0.87-1.55), with only maximal exercise and recovery increasing FORT (p < 0.05, d = 0.23-0.32). Overall, a decrease in oxidative stress in response to submaximal and maximal exercise was evident (p < 0.05, d = 0.46). There were no gender differences for ARH (p > 0.05). The velocity at lactate threshold (vLT) correlated with the FORD response at rest, maximal exercise, and recovery (p < 0.05). Using the clinical POC redox test, an absence of oxidative stress after exhaustive exercise is evident in the nonfatigued elite endurance athlete. The blood antioxidant response (FORD) to exercise appears to be related to a key marker of aerobic fitness: vLT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call