Abstract

We examined the effects of exercise intensity and training [12 wk, 5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on lipolysis and plasma free fatty acid (FFA) flux in women (n = 8; 24.3 +/- 1.6 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials [same absolute workload (65% of old VO2 peak; ABT) and same relative workload (65% of new VO2 peak; RLT)] were performed using infusions of [1,1,2,3,3-2H]glycerol and [1-13C]palmitate. Pretraining rates of FFA appearance (Ra), disappearance (Rd), and oxidation (Rox p) were similar between the 65% (6.8 +/- 0.6, 6.2 +/- 0.7, 3.1 +/- 0.3 micromol. kg-1. min-1, respectively) and the 45% of VO2 peak trials. At ABT and RLT training increased FFA Ra to 8.4 +/- 1.0 and 9.7 +/- 1.1 micromol. kg-1. min-1, Rd to 8.3 +/- 1.0 and 9.5 +/- 1.1 micromol. kg-1. min-1, and Rox p to 4.8 +/- 0.4 and 6.7 +/- 0.7 micromol. kg-1. min-1, respectively (P </= 0.05). Total FFA oxidation from respiratory exchange ratio was also elevated after training at ABT and RLT, with all of the increase attributed to plasma FFA sources. Pretraining, glycerol Ra was higher during exercise at 65 than 45% of VO2 peak (6. 9 +/- 0.9 vs. 4.7 +/- 0.6 micromol. kg-1. min-1) but was not changed by training. In young women 1) plasma FFA kinetics and oxidation are not linearly related to exercise intensity before training, 2) training increases FFA Ra, Rd, and Rox p whether measured at given absolute or relative exercise intensities, 3) whole body lipolysis (glycerol Ra) during exercise is not significantly impacted by training, and 4) training-induced increases in plasma FFA oxidation are the main contributor to elevated total FFA oxidation during exercise exertion after training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call