Abstract
Exercise training (ET) has been shown to improve regional perfusion in ischemic syndromes. This might be partially related to a regeneration of diseased endothelium by circulating progenitor cells (CPCs) or CPC-derived vasculogenesis. The aim of the present study was to determine whether ischemic stimuli during ET are required to promote CPC mobilization in patients with cardiovascular diseases. Patients with peripheral arterial occlusive disease (PAOD) were randomized to 4 weeks of daily ischemic ET or control (group A). Successfully revascularized patients with PAOD were randomized to 4 weeks of daily nonischemic ET or control (group B). Patients with stable coronary artery disease were subjected to 4 weeks of subischemic ET or control (group C). At baseline and after 4 weeks, the number of KDR+/CD34+ CPCs was determined by fluorescence-activated cell sorting analysis. Levels of vascular endothelial growth factor (VEGF) were measured by ELISA. A Matrigel assay was used to quantify CPC integration into vascular structures. Expression of the homing factor CXCR4 was determined by reverse transcription-polymerase chain reaction. In group A only, ischemic ET increased VEGF levels by 310% (P<0.05 versus control) associated with an increase in CPCs by 440% (P<0.05 versus control), increased CXCR4 expression, and enhanced integration of CPCs into endothelial networks. In contrast, subischemic ET in groups B and C increased CXCR4 expression and CPC integration. In training programs, symptomatic tissue ischemia seems to be a prerequisite for CPC mobilization. However, ischemic and subischemic ET programs affect CXCR4 expression of CPCs, which might lead to an improved CPC integration into endothelial networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.