Abstract
It remains unclear whether excessive nitrogen additions lead to the degradation of Suaeda salsa (S. salsa) by affecting the nitrogen pool, enzyme activities, and bacterial community structure of wetland soils. This study investigated the effect of five added nitrogen concentrations (0, 1, 2, 4, and 6 mmol L−1 N with NH4NO3 = group C, group L, group M, group H, and group G, respectively) on nitrogen uptake by S. salsa and nitrogen transformation in the wetland soils of the Liaohe estuary. The height, weight, and total nitrogen (TN) of S. salsa in group G was significantly lower than in the other groups (p <0.05). The NH4+-N concentration in the soil tended to increase with increasing nitrogen addition, but the TN concentration in the soil tended to decrease. The nitrogenase, protease, urease, ammonia monooxygenase (AMO), nitrous oxide reductase (NOR), and dehydrogenase (DHA) activities increased with increasing nitrogen addition within the range of 0 to 4 mmol L−1. We identified 30 phyla and 48 known genera across all five groups. The predominant phyla were Proteobacteria (52.68%), Bacteroidetes (22.58%), and Planctomycetes (3.94%). The most abundant genus was Acinetobacter (13.38%), followed by Proteiniphilum (11.88%) and Brevundimonas (6.03%). The total number of soil bacterial species increased with increasing nitrogen addition. Group G had lower soil bacterial activity and diversity than the other groups. It was concluded that appropriate levels of nitrogen addition could promote nitrogen uptake by S. salsa and nitrogen transformation in the wetland soils of the Liaohe estuary by affecting soil enzyme activities and soil bacterial activity, diversity, abundance, and composition, while excessive nitrogen additions may be one of the reasons for the degradation of S. salsa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.