Abstract
Abstract A simple river-ocean mixing approach has been frequently used to examine estuarine and coastal carbonate system speciation. Coastal areas receiving significant nutrient inputs, however, can have the carbonate chemistry greatly deviated from this mixing-only scheme because of disparate, but spatially coupled biogeochemical processes, i.e., intense primary production in surface waters and elevated respiration in bottom waters; the latter often leads to bottom-water hypoxia (dissolved oxygen or DO concentration − 1 ) and acidification. As a result of land use change, riverine TA input is known to enhance coastal water buffer capacity, although this effect in eutrophic coastal water has not been systematically studied. The physical disturbances of shallow coastal waters by storms can disrupt bottom hypoxia through overturning the water column. This overturn has been proposed to exacerbate bottom water acidification, because of the different exchange rates of oxygen and CO 2 , which could lead to a ‘reset’ of oxygen concentration but little change in the total dissolved inorganic carbon concentration. We used data from the summer 2010 hypoxia cruise in the northern Gulf of Mexico shelf, during which a tropical depression (Bonnie) perturbed the bottom water. Carbonate buffer capacity in both surface and subsurface waters along the salinity gradient suggested that eutrophication-induced surface production and bottom respiration far outweighed the influence of river TA variation and temperature changes in determining carbonate changes on centennial time scales. We propose, based on literature-based CO 2 flux reported in this area, that the benthic (both aerobic and anaerobic) respiration-produced CO 2 flux (with a lesser flux of alkalinity), instead of bottom water reset by storms, could be responsible for further acidifying hypoxic bottom water in addition to water column aerobic respiration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.