Abstract

The objectives of the present study were to determine (a) if differences exist between the selectively bred alcohol-preferring (P) and -non-preferring (NP) lines of rats in the acoustic startle response (ASR) and prepulse inhibition (PPI), and (b) the effects of ethanol on these measures. Alcohol-naı̈ve adult female P and NP rats received a single i.p. injection of saline or ethanol (0.25, 0.5, 1.0, or 1.5 g/kg) and were placed in the startle apparatus 10 min later. After a 5-min acclimation period, rats received five alternating trials of a startle stimulus alone (SSA) (115-dB white noise) or a PPI trial (90-dB white noise preceding a 115-dB white noise). Analysis of the ASR revealed that P rats exhibited higher startle amplitudes than did NP rats with saline injections. The 0.5-g/kg ethanol dose reduced the startle amplitude in P, but not NP, rats. The 1.0- and 1.5-g/kg ethanol doses nearly abolished the ASR in the NP line, whereas only the highest ethanol dose had this effect in the P line. Vehicle-treated P and NP rats exhibited comparable PPI levels, but only P rats showed a significant disruption (30%) at the 0.50-g/kg ethanol dose. Neither P nor NP rats were affected by ethanol treatment at the 0.25-g/kg dose. Overall, the results suggest that: (a) the difference in baseline ASR may indicate line differences in the neurocircuitry mediating this response, possibly reflecting higher innate levels of emotional reactivity in the P line; (b) the P line may be more sensitive than the NP line to the effects of ethanol in reducing emotional reactivity; and (c) low-dose ethanol may have a greater disruptive effect on sensorimotor gating mechanisms in the P than NP rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call