Abstract
Abstract In this study, silicone rubber foam (SF) was prepared through cross-linking and foaming. The effects of ethanol content on the SF were investigated in terms of the physical properties, static cushioning properties, dynamic thermomechanical properties, and dynamic fatigue properties. The cell structure was characterized using scanning electron microscopy and its relationship with the SF properties was analyzed. With increasing ethanol content, the cell diameter increases gradually and its uniformity deteriorates. Moreover, the density, tensile strength, and elongation at breaking of the SF samples gradually decrease. In addition, with the increase of strain and stress, the cushioning coefficient of SF decreases initially and then increases, and the fatigue times worsens with increasing ethanol content. However, fatigue process has little effect on the cushioning performance of SF, which means the SF can be used as reusable packaging materials and thereby reduce environmental pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.