Abstract
Estrogen modulates NMDA receptors function in the brain. It increases both dendritic spine density and synapse number in the hippocampus, an effect that can be blocked by NMDA antagonist. In this study, we investigated the effect of 17beta-estradiol and progesterone treatment on NMDA receptors in ovariectomized rats. Two different doses were used for 10 weeks. Receptor autoradiography was done on brain sections using [(3)H] MK-801 as a ligand. Our results showed a significant increase in [(3)H] MK-801 binding in the dentate gyrus, CA3 and CA4 areas of the hippocampus of ovariectomized compared to sham operated rats. In addition, we observed similar changes in CA1. 17beta-estradiol treatment in both doses reduced the binding back to the normal level while progesterone treatment did not show any effect. Spatial reference memory was tested on Morris water maze task. Ovariectomy severely impaired spatial reference memory. Estradiol but not progesterone treatment significantly improved the memory performance of the ovariectomized rats. Low dose treatment showed better learning than high dose estrogen treatment. The decrease in the antagonist sites by estradiol treatment could result in an increase in the sensitivity of the hippocampus to the excitatory stimulation by glutamate system and hence the effect of estradiol on learning and memory. The changes of NMDA receptors in the hippocampus support the concept that estrogen-enhancing effect on spatial reference memory could be through the enhancing of NMDA function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.