Abstract

This article is a selective extension of a review on recombinant human erythropoietin (rHu-EPO) as an anti-anaemic drug, published in this journal in 2000. It summarises the recent advances in understanding the molecular mechanisms by which the hypoxia-inducible transcription factor 1 (HIF-1) regulates O(2)-dependent genes, including the EPO gene in brain. With respect to brain integrity, EPO exerts positive effects in two different ways. First, rHu-EPO raises the blood haemoglobin concentration and, hence, the O(2) capacity of the blood in anaemic patients. The restored O(2) supply ameliorates attention difficulties and psychomotor slowing, improves memory capacities and normalises neuroendocrine functions. Second, EPO can act as a neurotrophic and neuroprotective factor directly in brain. EPO and its receptor are expressed in the cerebral cortex, cerebellum, hippocampus, pituitary gland and spinal cord. In vitro EPO protects against glutamate-induced cell death in a dose-dependent way. In animal models it reduces volumes of brain ischaemia, protects the cortex from hypoxic damage and leads to survival of neurons and synapses. One can expect that in the near future rHu-EPO will be used therapeutically in cerebral ischaemia, brain trauma, inflammatory diseases, and neural degenerative disorders. A first clinical trial has shown the neuroprotective effectiveness of the drug in cerebral ischaemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.