Abstract

Recent studies have shown that lead (Pb) could disrupt the prooxidant/antioxidant balance of tissue which leads to biochemical and physiological dysfunction. Epigallocatechin-3-gallate (EGCG), a catechin polyphenols component, is found to be an effective antioxidant. The present study investigated whether EGCG administration could reverse the changes on redox states in rat hippocampus caused by lead exposure. The association between redox status changes and long-term potentiation (LTP) in CA1 area of hippocampus were also examined. Wistar rats exposed to lead from postnatal day 1 were followed by 10 days of EGCG (10, 25 and 50 mg/kg) administration through intraperitoneally (ip), and the rats were sacrificed for experiments at the age of 21–23 days. The experimental results showed that glutathione (GSH) and superoxide dismutase (SOD) activity decreased accompanied with LTP amplitude decrease in CA1 area of hippocampus in the lead-exposed group. EGCG supplementation following lead intoxication resulted in increases in the GSH and SOD levels and increases in the LTP amplitude. Malondialdehyde (MDA) levels, a major lipid peroxidation byproduct, increased following lead exposure and decreased following EGCG treatment. In hippocampal neuron culture model, lead exposure (20 μM) significantly inhibited the viability of neurons which was followed by an accumulation of ROS and a decrease of mitochondrial membrane potential (Δ Ψ m). Treatment by EGCG (10–50 μM) effectively increased cell viability, decreased ROS formation and improved Δ Ψ m in hippocampal neurons exposed to lead. These observations suggest that EGCG is a potential complementary agent in the treatment of chronic lead intoxication through its antioxidative character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.