Abstract

This study explored the effects of the Epichloë sinensis endophyte on growth, photosynthesis, ionic content (K+ and Ca2+), phytohormones (abscisic acid—ABA, cytokinin—CTK, indolE−3-acetic acid—IAA, and gibberellin—GA), and elements—C, N, P (in the shoot and root) in two ecotypes of Festuca sinensis (ecotypes 111 and 141) under different soil water conditions (35% and 65% relative saturation moisture content (RSMC)). The results showed that 35% RSMC inhibited the plants’ growth, and compared with 65% RSMC, there was a significant (p < 0.05) decrease in the growth and photosynthesis indices, the contents of CTK and GA, Ca2+ concentration, and the contents of C, N, and P (in both the aboveground and underground parts) under 35% RSMC. E. sinensis had beneficial effects on host growth and stress tolerance. Under both 35% and 65% RSMC, the presence of E. sinensis significantly (p < 0.05) increased host plant height, tiller number, root length, root volume, shoot dry weight, chlorophyll content, and the rate of photosynthesis of both ecotypes. Furthermore, the shoot C, N, and P contents in plants infected with E. sinensis (E+) from the two ecotypes, under both conditions of RSMC, were significantly (p < 0.05) higher than those in corresponding plants that were not infected with E. sinensis (E−). Under 35% RSMC, the contents of ABA, K+, Ca2+, and root P contents in E+ plants were significantly (p < 0.05) higher than those in corresponding E− plants in both ecotypes. However, under 65% RSMC, root C, N, and P contents in E+ plants of ecotype 111 and 141 were significantly (p < 0.05) higher than those in corresponding E− plants. In addition, the host ecotype also had effects on host growth and stress tolerance; the growth and photosynthetic indices of ecotype 141 were significantly (p < 0.05) higher than those of ecotype 111 under 35% RSMC, which suggested that ecotype 141 is more competitive than ecotype 111 under water deficiency conditions. These findings suggest that the endophyte improved the host plant resistance to water deficiency by maintaining the growth of the plant, improving photosynthesis, accumulating K+ and Ca2+, promoting nutrient absorption, and adjusting the metabolism of plant hormones.

Highlights

  • F. sinensis ecotypes to comprehensively evaluate the difference between E+ and E− plants under different soil moisture conditions (35% RSMC and 65% RSMC)

  • The results showed that the growth and photosynthesis of F. sinensis were inhibited at 35% RSMC, suggesting that the water deficit had a great influence on plant physiology

  • The previous studies about the response of F. sinensis to different water levels confirmed that 35% RSMC was considered drought stress for these two ecotypes of F. sinensis [27]

Read more

Summary

Introduction

Drought is one of the major environmental factors determining plant productivity and distribution [1]. This condition is rapidly increasing on a global scale. The water deficit in the soil and high temperatures are the two important factors that cause drought stress in temperate environments, which results in the inhibition of plant photosynthesis, ion imbalance, and metabolic disorder, affecting plant growth and the quantity of yield [3,4,5]. The mechanisms of drought tolerance mainly include assimilated accumulation and translocation, osmotic adjustment, and maintenance of cell wall elasticity [3]. These mechanisms can be affected by endophyte infection in grasses [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call