Abstract

As one of the most effective methods to modify proteins, enzymatic hydrolysis is used widely in the preparation of wheat products in the food industry. During the same process, starch pasting occurs frequently. The effects of wheat protein hydrolysis with papain, pepsin, and trypsin on the pasting properties of 3 different kinds of flour were investigated in 5 concentrations. Results showed that the peak viscosity, trough, final, and integral area of pasting curve of these flours decreased with increasing enzymatic hydrolysis of protein, and decreased significantly with the increasing enzyme concentrations. Medium-gluten flour was the least sensitive to enzymatic activity and weak-gluten the most sensitive. Downtrends appeared with increasing papain and trypsin concentrations in the form of breakdown. Enzymes had no significant different effect on the peak times of strong- and medium-gluten flour, but prolonged peak time slightly in weak-gluten flour. The pasting time and temperature of strong- and medium-gluten flour were significantly increased in a concentration-dependent manner. However, there were no significant effects on the pasting times of weak-gluten flour. These results could supply a basis for utilization of enzymatic hydrolysis of wheat protein in food industry and for further studies into the interactions between hydrolyzed protein and starch in food or processing industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call