Abstract

Lithium-ion batteries with relatively narrow operating temperature range have provoked concerns regarding the safety of LIBs. In this work, a series of experiments were conducted to explore the thermal runaway (TR) behaviors of charging batteries in a high/low temperature test chamber. The effects of charging rates (0.5 C, 1 C, 2 C, and 3 C), and ambient temperature (2 °C, 32 °C and 56 °C) are comprehensively investigated.The results indicate that the cell exhibited greater thermal hazard at the high charging rate and ambient temperature conditions. As the charging rate increased from 0.5 C to 3 C, more lithium intercalated in the anode prompt the TR triggered in advance, the TR onset temperature decreased from 297.5 °C to 264.7 °C. In addition, the charging time decreased with the elevated ambient temperature, resulting in a relatively higher TR onset temperature and lower maximum temperature, and the average TR critical time declined by 115–143 s. Finally, the TR required less heat accumulation with increasing of charging rate and ambient temperature, and the heat generation of side reaction played a substantial role that accounted for approximately 54%∼63%. These results provide an insight into the charging cell thermal runaway behaviors in complex operation environments and deliver valuable guidance for improving the safety of cell operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call