Abstract

With the increase of global environmental changes and intensive anthropogenic activities, it is important to maintain and improve soil function. Here, we evaluated the effects of environmental stress (i.e., drying, high temperature and the combination of drying and high temperature) on soil functional stability (resistance and resilience) under three kinds of water management mea-sures, which included conventional-flooded cultivation, non-flooded with uncovered cultivation and non-flooded with straw mulching. Results showed that, compared to single environmental stress (drying or high temperature), combined stress led to lower soil fungal biomass, bacterial biomass, basal respiration, and soil functional resistance, and higher contents of dissolved organic carbon (DOC) and NH4+-N after one day treatment of stress. Combined stress significantly decreased soil functional resilience after 56 days treatment of stress. Results from the correlation analysis showed that bacterial and fungal biomass were significantly related to soil resistance and resilience. Different water management measures could regulate the effects of environmental stress on soil functional stability. Non-flooded with straw mulching treatment significantly increased the contents of soil DOC, NH4+-N, fungal biomass and bacterial biomass, resulting in higher soil functional resistance and resilience compared with conventional-flooded cultivation and non-flooded with uncovered cultivation under both single and combined stress. In summary, non-flooded with straw mulching could improve soil functional stability under environmental stress, and it could be a suitable agricultural management for non-continuously flooded rice cultivation under multiple stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call