Abstract

Abstract. Research carried out on soil organic carbon stock (SOCS) in the Sudano-Sahelian region of Cameroon is very rare. The few existing studies are mostly available in reports and concern in most cases carbon stocks in plant biomass. In order to contribute to the documentation on soils in this part of the country, the present work was designed to evaluate the SOCS in the main soil types and the influence of environmental factors and soil properties on these stocks under the natural dry tropical area of the Sudano-Sahelian zone of Cameroon. The study was undertaken in four sites, including three natural forest reserves (Laf, Zamai, Kosohon) and one national park (Mozogo), located at different latitudes. Three replicates were collected at each site, giving rise to three sampling points chosen per site, from 0 to 75 cm depth, for the determination of SOCS. At each sampling point, soils were sampled using depth increments of 25 cm from the surface. The studied area is covered by Haplic Vertisols, Dystric Arenosols, Dystric Leptosols and Dystric Planosols. Total SOCS (T-SOCS) content, which refers to a depth of 75 cm, decreases with increasing latitude, with 249±26.26 Mg ha−1 in Vertisols at Laf forest reserve most southerly located, 199±8.00 Mg ha−1 in Arenosols at Zamai forest reserve, 166±16.63 Mg ha−1 in Leptosols at Kosohon forest reserve and 161±8.88 Mg ha−1 in Planosols at Mozogo national park most northerly located, regardless of the altitude. No significant correlation was noted between T-SOCS and the altitude. A good correlation was noted between precipitation which decreases with increasing latitude and T-SOCS, indicating the importance of climate in the distribution of T-SOCS in the study area, which directly influences the productivity of the vegetation. More than 60 % of the SOCS was stored below the first 25 cm from the soil surface, a peculiarity of SOCS in drylands. The SOCS in the Sudano-Sahelian area of Cameroon is mainly influenced by climate and vegetation.

Highlights

  • Soil is the largest carbon (C) pool, and its content in the first 100 cm is estimated at about 1500 Pg (1 Pg = 1015 g), which represents more C than what is currently contained in the atmosphere and vegetation combined (Boulmane et al, 2010; Lehmann and Kleber, 2015)

  • Bulk density (BD) values increased with depth except in Vertisols where similar values were observed in the two upper sections

  • The T-soil organic carbon (SOC) stock (SOCS) is controlled by climate and vegetation, with precipitation explaining 41.15 % of the variability of SOCS

Read more

Summary

Introduction

Soil is the largest carbon (C) pool, and its content in the first 100 cm is estimated at about 1500 Pg (1 Pg = 1015 g), which represents more C than what is currently contained in the atmosphere and vegetation combined (Boulmane et al, 2010; Lehmann and Kleber, 2015). Soil organic C stocks are crucial for a wide range of ecosystem services such as climate regulation through atmospheric CO2 storage (Olson et al, 2016; Greiner et al, 2017; Mayer et al, 2019). The interaction between the root system and the soil profile has profound impact on soil C accumulation, where the root system can contribute to soil organic carbon (SOC) stocks (Olson and Al-Kaisi, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call