Abstract

BackgroundThis study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS).MethodsA total of 74 wild-type male C57BL/6J mice underwent BCAS or sham surgery. One week after surgery, the mice were randomly assigned into three different groups having varied amounts of EE—standard housing with no EE conditions (std), limited exposure with 3 h EE a day (3 h) and full-time exposure to EE (full) for 12 weeks. At 16 weeks after BCAS surgery, behavioural and cognitive function were assessed prior to euthanasia. Brain tissues were analysed for the degree of gliosis including morphological changes in astrocytes and microglia.ResultsChronic cerebral hypoperfusion (or BCAS) increased clasmatodendrocytes (damaged astrocytes) with disruption of aquaporin-4 immunoreactivity and an increased degree of microglial activation/proliferation. BCAS also impaired behavioural and cognitive function. These changes were significantly attenuated, by limited exposure compared to full-time exposure to EE.ConclusionsOur results suggest that moderate or limited exposure to EE substantially reduced glial damage/activation. Our findings also suggest moderate rather than continuous exposure to EE is beneficial for patients with subcortical ischaemic vascular dementia characterised by white matter disease-related inflammation.

Highlights

  • This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS)

  • This study investigated the effects of EE on glial damage and pathological sequelae in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS), with the aim of identifying effective and safe novel interventional strategies for vascular cognitive impairment (VCI)/ vascular dementia (VaD)

  • Limited exposure to EE (BCAS-3 h) reduced % GFAP-stained area compared with BCAS-std (P < 0.01) (Fig. 2b) and the numerical density of GFAP-positive astrocytes in the entire corpus callosum (CC) compared with BCAS-std and BCAS-full subgroups (Fig. 2c)

Read more

Summary

Introduction

This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). A mouse model of chronic cerebral hypoperfusion induced by common carotid artery stenosis (BCAS) has been evaluated as one of the most reliable rodent models of VaD [21,22,23]. These models exhibited glial changes, i.e. astrogliosis and microglial proliferation in WM

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call