Abstract
The wear behavior of powder metallurgical Ti-47Al-2Cr-0.2Mo alloy prepared by pre-alloyed powders was investigated using pin-on-disk wear tests in different environments, viz, argon, 4% hydrogen in nitrogen, air and oxygen. The disk material was sinter-hot isostatically pressed, yttria-stabilized zirconia. Lower wear rates were found for the TiAl pins in oxygen-free environments, indicating that oxygen play a key role in the wear rate. In contrast, the presence of molecular hydrogen and moisture have nearly no effect. A combination of X-ray diffraction and energy dispersive X-ray spectroscopy indicated that the abrasive particles present mainly consisted of the zirconia. In addition, zirconia particles were embedded in the worn tips of the TiAl pins and mixed into the tribolayers. The high stress and high contact temperature at the wear surface made the zirconia disk undergo a phase transformation during the dry sliding wear, accompanied by grain pullout, surface uplifting and microcracking. The hard tribolayer with embedded zirconia particles provides some protection against further wear of the TiAl pin. The highly localized, repetitive shear stress during the wear tests may bring about amorphous TiAl in the wear debris. The main wear mechanisms were abrasive wear of two-body and three-body, some delamination and plastic deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.