Abstract

Fretting fatigue tests of a carbon steel and an aluminum alloy were carried out in various environments and the effects of oxygen and water vapor were investigated by tangential force measurements, the initiation and propagation of cracks and hardness and structural changes of the damaged surface layer. With carbon steel the effect of water vapor is negligible but oxygen has a deleterious effect on the initiation and propagation of fretting fatigue cracks. However, with an aluminum alloy the effect of oxygen is small but water vapor accelerates the initiation and propagation of cracks. Environmental effects are more dominant than the stress conditions with an aluminum alloy; material softening and structural change of the surface layer occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call