Abstract

This study explores the underlying mechanism between secondary refining efficiency, gas flow rate, and slag properties. The secondary refining efficiency is directly affected by the slag-metal interface area. Traditionally, the slag-metal interface has been limited to the liquid-liquid interface of the ladle cross-section and does not include the interface area between the entrained slag droplets and metal. To investigate the interface area with different slags and metals under various bottom blow rates, a physical model of a single-nozzle gas-stirred ladle was established using oil to simulate slag and water to simulate metal. The roles of relevant variables that affect the volume of entrained oil, the diameter of entrained droplets, and interface area were studied, as well as oil viscosity, interfacial tension, and oil thickness. Experimental data were collected using colorants and image processing techniques. Based on these findings, the increase in gas flow rate and oil layer thickness increased the volume of entrained oil and interface area, while the increase in oil viscosity and interfacial tension decreased these parameters. When the gas flow rate increased, the mean diameter of droplets first increased and then decreased. However, the specific surface area of droplets revealed the opposite trend. Furthermore, the mean diameter and specific surface area increased and decreased with increasing oil-layer thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.